Keam Maths Mocktest part 1

KEAM Math Mock Test

KEAM Math Mock Test

Question 1:
Let \( A = \{1, 2, 3\} \). How many subsets does \( A \) have?
  • A. 6
  • B. 7
  • C. 8
  • D. 9
  • E. 10
Question 2:
Let \( f(x) = x^2 \) be a function from \( \mathbb{R} \) to \( \mathbb{R} \). What is the value of \( f(3) \)?
  • A. 3
  • B. 6
  • C. 9
  • D. 12
  • E. 15
Question 3:
What is the value of \( \binom{5}{2} \)?
  • A. 5
  • B. 10
  • C. 15
  • D. 20
  • E. 25
Question 4:
If \( A = \{1, 2, 3\} \) and \( B = \{2, 3, 4\} \), what is \( A \cup B \)?
  • A. \(\{1, 2\}\)
  • B. \(\{1, 2, 3\}\)
  • C. \(\{1, 2, 3, 4\}\)
  • D. \(\{2, 3\}\)
  • E. \(\{2, 3, 4\}\)
Question 5:
Let \( f(x) = x^2 \) and \( g(x) = 2x \). Find \( (f \circ g)(x) \).
  • A. \( 2x^2 \)
  • B. \( 4x^2 \)
  • C. \( x^2 + 2x \)
  • D. \( x^4 \)
  • E. \( 4x \)
Question 6:
Which of the following is a binary operation on the set of real numbers \( \mathbb{R} \)?
  • A. Addition
  • B. Subtraction
  • C. Multiplication
  • D. Division
  • E. All of the above
Question 7:
If \( f: A \rightarrow B \) and \( g: B \rightarrow C \), what is the domain of \( g \circ f \)?
  • A. A
  • B. B
  • C. C
  • D. A U B
  • E. B U C
Question 8:
What is the value of \( \log_2(8) \)?
  • A. 1
  • B. 2
  • C. 3
  • D. 4
  • E. 5
Question 9:
Let \( A = \{1, 2, 3, 4\} \). Find the number of reflexive relations on \( A \).
  • A. 16
  • B. 64
  • C. 256
  • D. 1024
  • E. 2048
Question 10:
If \( A = \{1, 2, 3\} \) and \( B = \{4, 5, 6\} \), what is \( A \cap B \)?
  • A. \(\{1, 4\}\)
  • B. \(\{2, 5\}\)
  • C. \(\{3, 6\}\)
  • D. \(\{1, 2, 3, 4, 5, 6\}\)
  • E. \(\emptyset\)
Question 11:
Find the inverse of the function \( f(x) = 2x + 3 \).
  • A. \( f^{-1}(x) = \frac{x - 3}{2} \)
  • B. \( f^{-1}(x) = 2x - 3 \)
  • C. \( f^{-1}(x) = \frac{x + 3}{2} \)
  • D. \( f^{-1}(x) = \frac{2x + 3}{2} \)
  • E. \( f^{-1}(x) = \frac{3x + 2}{2} \)
Question 12:
What is the range of the function \( f(x) = x^2 \)?
  • A. \( \mathbb{R} \)
  • B. \( \mathbb{R}^+ \)
  • C. \( [0, \infty) \)
  • D. \( (-\infty, 0] \)
  • E. \( [0, 1] \)
Question 13:
If \( f(x) = x + 1 \) and \( g(x) = 2x \), find \( f(g(2)) \).
  • A. 3
  • B. 5
  • C. 7
  • D. 9
  • E. 11
Question 14:
What is the power set of \( \{1, 2\} \)?
  • A. \( \{ \{1\}, \{2\} \} \)
  • B. \( \{ \{\}, \{1\}, \{2\} \} \)
  • C. \( \{ \{\}, \{1\}, \{2\}, \{1, 2\} \} \)
  • D. \( \{ \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\} \} \)
  • E. None of these
Question 15:
If \( A = \{1, 2, 3\} \), find the number of elements in \( P(A) \) (power set of A).
  • A. 3
  • B. 6
  • C. 8
  • D. 9
  • E. 10
Question 16:
Determine whether the function \( f(x) = x^2 + 2x + 1 \) is one-to-one.
  • A. Yes
  • B. No
  • C. Cannot be determined
  • D. Only for positive x
  • E. None of the above
Question 17:
Let \( A = \{a, b\} \). Find the number of equivalence relations on \( A \).
  • A. 1
  • B. 2
  • C. 3
  • D. 4
  • E. 5
Question 18:
If \( A = \{1, 2, 3\} \) and \( B = \{4, 5, 6\} \), what is the Cartesian product \( A \times B \)?
  • A. \(\{(1,4), (2,5), (3,6)\}\)
  • B. \(\{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}\)
  • C. \(\{(1,4), (2,4), (3,4), (1,5), (2,5), (3,5), (1,6), (2,6), (3,6)\}\)
  • D. \(\{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}\)
  • E. None of the above
Question 19:
Find the domain of the function \( f(x) = \frac{1}{x-2} \).
  • A. \( \mathbb{R} \setminus \{2\} \)
  • B. \( \mathbb{R}^+ \)
  • C. \( \mathbb{R} \)
  • D. \( (2, \infty) \)
  • E. \( (-\infty, 2) \cup (2, \infty) \)
Question 20:
What is the image of 3 under the function \( f(x) = 2x + 1 \)?
  • A. 5
  • B. 6
  • C. 7
  • D. 8
  • E. 9
q1: "C", q2: "C", q3: "B", q4: "C", q5: "B", q6: "E", q7: "A", q8: "C", q9: "C", q10: "E", q11: "A", q12: "C", q13: "C", q14: "C", q15: "C", q16: "B", q17: "C", q18: "B", q19: "A", q20: "C"
Click here 🥶
NextoTips

Post a Comment

Previous Post Next Post