Home Keam Maths Mocktest part 1 KEAM Math Mock Test KEAM Math Mock Test Question 1: Let \( A = \{1, 2, 3\} \). How many subsets does \( A \) have? A. 6 B. 7 C. 8 D. 9 E. 10 Question 2: Let \( f(x) = x^2 \) be a function from \( \mathbb{R} \) to \( \mathbb{R} \). What is the value of \( f(3) \)? A. 3 B. 6 C. 9 D. 12 E. 15 Question 3: What is the value of \( \binom{5}{2} \)? A. 5 B. 10 C. 15 D. 20 E. 25 Question 4: If \( A = \{1, 2, 3\} \) and \( B = \{2, 3, 4\} \), what is \( A \cup B \)? A. \(\{1, 2\}\) B. \(\{1, 2, 3\}\) C. \(\{1, 2, 3, 4\}\) D. \(\{2, 3\}\) E. \(\{2, 3, 4\}\) Question 5: Let \( f(x) = x^2 \) and \( g(x) = 2x \). Find \( (f \circ g)(x) \). A. \( 2x^2 \) B. \( 4x^2 \) C. \( x^2 + 2x \) D. \( x^4 \) E. \( 4x \) Question 6: Which of the following is a binary operation on the set of real numbers \( \mathbb{R} \)? A. Addition B. Subtraction C. Multiplication D. Division E. All of the above Question 7: If \( f: A \rightarrow B \) and \( g: B \rightarrow C \), what is the domain of \( g \circ f \)? A. A B. B C. C D. A U B E. B U C Question 8: What is the value of \( \log_2(8) \)? A. 1 B. 2 C. 3 D. 4 E. 5 Question 9: Let \( A = \{1, 2, 3, 4\} \). Find the number of reflexive relations on \( A \). A. 16 B. 64 C. 256 D. 1024 E. 2048 Question 10: If \( A = \{1, 2, 3\} \) and \( B = \{4, 5, 6\} \), what is \( A \cap B \)? A. \(\{1, 4\}\) B. \(\{2, 5\}\) C. \(\{3, 6\}\) D. \(\{1, 2, 3, 4, 5, 6\}\) E. \(\emptyset\) Question 11: Find the inverse of the function \( f(x) = 2x + 3 \). A. \( f^{-1}(x) = \frac{x - 3}{2} \) B. \( f^{-1}(x) = 2x - 3 \) C. \( f^{-1}(x) = \frac{x + 3}{2} \) D. \( f^{-1}(x) = \frac{2x + 3}{2} \) E. \( f^{-1}(x) = \frac{3x + 2}{2} \) Question 12: What is the range of the function \( f(x) = x^2 \)? A. \( \mathbb{R} \) B. \( \mathbb{R}^+ \) C. \( [0, \infty) \) D. \( (-\infty, 0] \) E. \( [0, 1] \) Question 13: If \( f(x) = x + 1 \) and \( g(x) = 2x \), find \( f(g(2)) \). A. 3 B. 5 C. 7 D. 9 E. 11 Question 14: What is the power set of \( \{1, 2\} \)? A. \( \{ \{1\}, \{2\} \} \) B. \( \{ \{\}, \{1\}, \{2\} \} \) C. \( \{ \{\}, \{1\}, \{2\}, \{1, 2\} \} \) D. \( \{ \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\} \} \) E. None of these Question 15: If \( A = \{1, 2, 3\} \), find the number of elements in \( P(A) \) (power set of A). A. 3 B. 6 C. 8 D. 9 E. 10 Question 16: Determine whether the function \( f(x) = x^2 + 2x + 1 \) is one-to-one. A. Yes B. No C. Cannot be determined D. Only for positive x E. None of the above Question 17: Let \( A = \{a, b\} \). Find the number of equivalence relations on \( A \). A. 1 B. 2 C. 3 D. 4 E. 5 Question 18: If \( A = \{1, 2, 3\} \) and \( B = \{4, 5, 6\} \), what is the Cartesian product \( A \times B \)? A. \(\{(1,4), (2,5), (3,6)\}\) B. \(\{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}\) C. \(\{(1,4), (2,4), (3,4), (1,5), (2,5), (3,5), (1,6), (2,6), (3,6)\}\) D. \(\{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}\) E. None of the above Question 19: Find the domain of the function \( f(x) = \frac{1}{x-2} \). A. \( \mathbb{R} \setminus \{2\} \) B. \( \mathbb{R}^+ \) C. \( \mathbb{R} \) D. \( (2, \infty) \) E. \( (-\infty, 2) \cup (2, \infty) \) Question 20: What is the image of 3 under the function \( f(x) = 2x + 1 \)? A. 5 B. 6 C. 7 D. 8 E. 9 Submit Results q1: "C", q2: "C", q3: "B", q4: "C", q5: "B", q6: "E", q7: "A", q8: "C", q9: "C", q10: "E", q11: "A", q12: "C", q13: "C", q14: "C", q15: "C", q16: "B", q17: "C", q18: "B", q19: "A", q20: "C" Click here 🥶 Facebook Twitter